Wednesday, March 19, 2008 - 4:15 PM
Convention Center, Second Level, R06 (Ernest N. Morial Convention Center)
08463

Oxidation of a Single Crystal Nickel-Base Superalloy at 950 °C –

Anja Pfennig, FHTW University of Applied Sciences; Axel Kranzmann, BAM

The nickel-base single crystal alloy investigated is a widely used material for first and second row blades in stationary gas turbines. Nickel-base superalloys are especially designed to resist high temperature oxidation by process gases. To determine this high temperature behaviour oxidation testing was carried out using samples cut perpendicular to (001)-direction. Microstructures were characterized by XRD, LM, SEM, and EDX, after a series of heat treatments (950 °C, 0 h - 1000 h). Mass gain and the respective thicknesses of the different oxide layers were measured to determine oxidation kinetics. In general, the isothermal oxidation behaviour at 950 °C, as defined by weight gain, follows a parabolic law with a parabolic rate constant around 4 · 10-6 mg2/(cm4 · s). A short incubation time is followed by the constitution of a multi-layered oxide scale. The oxide scale consists of a three layer structure. An outer scale contains a Ti-bearing thin film associated as TiO2 and NiTiO3 but mostly Cr attributed to Cr2O3, (Ni/Co)Cr2O4 beside NiTaO4. This outer scale is connected to a discontinuous layer of inner oxidation consisting mainly of Al2O3, which is followed by an area of γ´-depletion within the base material.